<u>DIRECTIONS</u>: Write in vertex form and find the vertex, axis of symmetry, state how it opens, describe its shape and graph it.

1.
$$y = -2x^2 - 4x + 2$$

2.
$$y = x^2 - 4x + 2$$

2.
$$y = x^2 - 4x + 2$$
 3. $y = \frac{1}{2}x^2 - 4x + 6$

see Page 3

see Page 4

see Page 5

DIRECTIONS: Factor completely.

4.
$$8x^2 + 2x - 3$$

4.
$$8x^2 + 2x - 3$$
 5. $2x^2 + 16x + 30$ **6.** $x^2 - 25$ **7.** $9x^2 + 24x + 16$

6.
$$x^2 - 25$$

7.
$$9x^2 + 24x + 16$$

$$(2x-1)(4x+3)$$
 $2(x+5)(x+3)$ $(x+5)(x-5)$ $(3x+4)^2$

$$2(x+5)(x+3)$$

$$(x+5)(x-5)$$

$$(3x + 4)^2$$

8.
$$4x^2 - 5x - 6$$

9.
$$6x^2 - 24$$

8.
$$4x^2 - 5x - 6$$
 9. $6x^2 - 24$ **10.** $4x^2 - 20x + 25$ **11.** $x^2 + 6x + 8$

11.
$$x^2 + 6x + 8$$

$$(x-2)(4x+3)$$

$$(x-2)(4x+3)$$
 $6(x+2)(x-2)$ $(2x-5)^2$ $(x+4)(x+2)$

$$(2x-5)^2$$

$$(x+4)(x+2)$$

DIRECTIONS: Simplify.

12.
$$\sqrt{27}$$

13.
$$\sqrt{80}$$

14.
$$3\sqrt{2} \cdot 2\sqrt{6}$$

15.
$$\sqrt{10} \cdot 3\sqrt{1}$$

12.
$$\sqrt{27}$$
 13. $\sqrt{80}$ **14.** $3\sqrt{2} \cdot 2\sqrt{6}$ **15.** $\sqrt{10} \cdot 3\sqrt{12}$ **16.** $\sqrt{-6} \cdot \sqrt{-4}$

$$3\sqrt{3}$$

$$4\sqrt{5}$$

$$12\sqrt{3}$$

$$6\sqrt{30}$$

$$-2\sqrt{6}$$

17.
$$(3 + 9i) + (4 - 2i)$$

17.
$$(3+9i)+(4-2i)$$
 18. $(5-2i)-(14+6i)$

19.
$$\frac{3}{4+3i}$$

20.
$$\frac{2}{5i}$$

$$7 + 7i$$

$$-9 - 8i$$

$$\frac{12}{25} - \frac{9}{25}i$$

$$-\frac{2i}{5}$$

DIRECTIONS: Solve by completing the square.

21.
$$x^2 - 12x + 28 = 0$$

22.
$$4x^2 + 40x + 280 = 0$$

$$x = 6 \pm 2\sqrt{2}$$

$$x = -5 \pm 3i\sqrt{5}$$

DIRECTIONS: Solve by the quadratic formula.

23.
$$6x^2 - 8x + 3 = 0$$

24.
$$x^2 - 7x + 19 = 0$$

$$x = \frac{4 \pm i\sqrt{2}}{6}$$

$$x = \frac{7 \pm 3i\sqrt{3}}{2}$$

DIRECTIONS: Solve by any appropriate method.

25.
$$x^2 + 4x - 12 = 0$$

26.
$$x^2 + 3x - 1 = 0$$

25.
$$x^2 + 4x - 12 = 0$$
 26. $x^2 + 3x - 1 = 0$ **27.** $2(x + 3)^2 = 10$

$$x = -6, 2$$

$$x = -6,2$$
 $x = \frac{-3 \pm \sqrt{13}}{2}$ $x = -3 \pm \sqrt{5}$

$$x = -3 \pm \sqrt{5}$$

DIRECTIONS: Find the value of the discriminant and the nature of the roots.

28.
$$x^2 + 3x - 6 = 0$$

28.
$$x^2 + 3x - 6 = 0$$
 29. $2x^2 + 5x + 4 = 0$

DIRECTIONS: Find the zeros of the function/x-intercepts.

30.
$$y = x^2 - 18x + 32$$
 31. $y = x^2 - 4x + 10$

31.
$$y = x^2 - 4x + 10$$

$$x = 2, 16$$

none

DIRECTIONS: Write a quadratic function in vertex form whose graph has the given vertex and passes through the given point.

$$y-2 = -5(x+3)^2$$
 $y-1 = (x-6)^2$

$$y - 1 = (x - 6)^2$$

<u>DIRECTIONS</u>: Write a quadratic equation with integral coefficients having the given roots.

34.
$$1 + \sqrt{3}$$
 . $1 - \sqrt{3}$

34.
$$1 + \sqrt{3}$$
, $1 - \sqrt{3}$ **35.** $\frac{1 + \sqrt{2}}{3}$, $\frac{1 - \sqrt{2}}{3}$ **36.** $3 + i$, $3 - i$

$$x^2 - 2x - 2 = 0$$

$$x^2 - 2x - 2 = 0$$
 $9x^2 - 6x - 1 = 0$ $x^2 - 6x + 10 = 0$

$$x^2 - 6x + 10 = 0$$

1. $y-4=-2(x+1)^2$

Vertex: (-1,4) Axis of symmetry: x = -1 Opens DOWN narrower than $y = x^2$

2. $y + 2 = (x - 2)^2$

Vertex: (2,-2) Axis of symmetry: x=2 Opens UP same shape as $y=x^2$

 $3. \ y+2=\frac{1}{2}(x-4)^2$

Vertex: (4, -2) Axis of symmetry: x = 4 Opens UP wider than $y = x^2$

